Updating the Ecosystem Classification of Norway with Remote Sensing Data

Max Koller, Benjamin Aubrey Robson, Gidske Andersen, Nils Erik Jørgensen, Steward Wysemar

Background

- Current "Natur i Norge" database very sporadic, inconsistent, and subjective
- System is not especially quantitative
- Huge potential to be updated with remote sensing and classified into the main eco-systems:
 - Vegetation
 - Meadows
 - Forest
 - Deciduous
 - Coniferous
 - Bogs
 - Bare rock
 - Open areas
 - Snow/Ice
 - Water
 - Urban
 - Semi-natural areas

Aims and challenges

- Develop an **automated** system to distinguish the main eco-systems from satellite imagery
- Routines for mass downloading and preparation of data for large areas
- Ability to repeat the analysis on-demand and assess changes
- Challenges:
 - Large amounts of data not always organised in a logical way.
 - Clouds, shadows
 - Some of the classes are difficult to distinguish solely with spectral information

Step 1: Download lots and lots of satellite imagery

- Tiling of Sentinel 2 products...
- …and maximum two simultaneous downloads allowed
- Therefore use Python to download and catalogue necessary satellite imagery

→ Each Sentinel image that meets the criteria downloaded and unzipped

System overview

Modelling shadows

Object image analysis: Image segmentation

Image classification: SVM, Feature Space

Towardsdatascience.com

Image classification: Feature Space

Deciduous forest vs coniferous forest

Main classification - SVM

- Training data collected in eCognition based on AR5 data, NiN data and aerial images
- Verification data collected in ArcMap using same data, different locations
- Challenges related to geographic extent and data coverage
 - Trøndelag subset 10x larger than Hordaland subset
 - Elevation data coverage lacking in some areas

100 km

Confusion matrix

Klasse	Bart fjell	Vann	Urban	Snø	Åpent		Skog	Total	U	lser
Bart fjell	26	0	0	1		1		0	28	0,93
Vann	0	158	0	0		0		1	159	0,99
Urban	5	0	68	0		3		1	77	0,88
Snø	0	0	0	15		0		0	15	1,00
Åpent	1	0	5	0		81		2	89	0,91
Skog	0	0	0	0		6	10	9	115	0,95
Total	32	158	73	16		91	13	0	500	0,00
Producer	0,81	1,00	0,93	0,94		0,89	0,8	4	0,00	0,91
						e .				
Klasse	Nal	kent berg	Vann	Urban		Apent	område	Skog	Total	User
Nakent berg		281		0	7		1	2	29	91 0.97
Vann		0	203	34	9		0	2	204	45 0.99
Urban		37		91	751		1	0	88	30 0.85
Åpent område	2	19		3	25		81	2	13	30 0.62
Skog		0		1	73		10	170	25	54 0.67
Total		327	21	29	865		03	176	360	
iotai		337	21.	2.5	005			170	500	
Producer		0.83	0.9	96	0.86		0.87	0.97		0 0.92

What about mapping bogs?

- Cannot be identified spectrally
- Rather by looking at recurring patterns in the spectral values
- Can use machine learning methods (i.e. deep learning)

Heatmap

Seveloper - [Bog_CNN_SAR.dpr - New Level of 1: Pixels]

IBRARY CLASSIFICATION PROCESS TOOLS EXPORT WINDOW HELP

🞯 📽 🖫 🗅 🖨 🧊 🔩 🦂 🖉 🎬 🚰 🖉 📲 🗒 🎘 🗒 😫 🖉 💺 🕭 名 👄 300% 🔹 🗹 🛣 main 🔹 New Level 🤹 🖡 🕇 🖿 🚱 🚱 😒 📲 🚼 🐯 🛠 👠

- 8

Classification of major water bodies

Classification of snow patches

Objects > 0.25 heatmap OR > 0.4 median heatmap to bogs

Objects > 0.25 heatmap OR > 0.4 median heatmap to bogs

Expansion to nearby objects

Merging of objects

Results

Producer Accuracy 74%

User Accuracy 73%

CNN heatmap based on 20 cm RGB aerial images

CNN heatmap based on Sentinel 1 + 2 (SAR, MS)

Future developments: Time series

Different sensors: WorldView 2 and LiDAR

Conclusions

 Remote Sensing has some key advantages when it comes to ecosystem mapping

- Some classes relatively easy to map...
- ...Some are challenging
- Python is essential in working with such big datasets
- Difficulties in scaling up to all of Norway?

 Potential in the exploitation of time series